PLTW Engineering

PLTW Engineering Formula Sheet 2014

1.0 Statistics

Mean

$\mu=\frac{\sum x_{i}}{N} \quad$ (1.1a) $\quad \bar{x}=\frac{\sum x_{i}}{n}$ (1.1b)
$\mu=$ population mean
$\overline{\mathrm{x}}$ = sample mean
$\Sigma x_{i}=$ sum of all data values ($x_{1}, x_{2}, x_{3}, \ldots$)
$\mathrm{N}=$ size of population
$\mathrm{n}=$ size of sample

Median

Place data in ascending order.
If N is odd, median = central value
If N is even, median = mean of two central values
$\mathrm{N}=$ size of population

Range (1.5)

Range $=\mathrm{x}_{\text {max }}-\mathrm{x}_{\text {min }}$
$x_{\text {max }}=$ maximum data value
$\mathrm{x}_{\text {min }}=$ minimum data value

Mode

Place data in ascending order.
Mode = most frequently occurring value
If two values occur with maximum frequency the data set is bimodal.
If three or more values occur with maximum frequency the data set is multi-modal.

Standard Deviation

$\sigma=\sqrt{\frac{\sum\left(\mathrm{x}_{\mathrm{i}}-\mu\right)^{2}}{\mathrm{~N}}}$
(Population)
(1.5a)
$\mathrm{s}=\sqrt{\frac{\sum\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}}{\mathrm{n}-1}}$
(Sample)
(1.5b)
$\sigma=$ population standard deviation
$\mathrm{s}=$ sample standard deviation
$\mathrm{x}_{\mathrm{i}}=$ individual data value ($\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots$)
$\mu=$ population mean
$\overline{\mathrm{x}}$ = sample mean
$\mathrm{N}=$ size of population
$\mathrm{n}=$ size of sample

2.0 Probability

Frequency

$f_{x}=\frac{n_{x}}{n}$

$f_{x}=$ relative frequency of outcome x

$\mathrm{n}_{\mathrm{x}}=$ number of events with outcome x
$\mathrm{n}=$ total number of events

Binomial Probability (order doesn't matter)

$P_{k}=\frac{n!\left(p^{k}\right)\left(q^{n-k}\right)}{k!(n-k)!}$
$P_{k}=$ binomial probability of k successes in n trials
$\mathrm{p}=$ probability of a success
$q=1-p=$ probability of failure
$\mathrm{k}=$ number of successes
$\mathrm{n}=$ number of trials

Independent Events

$\mathrm{P}(\mathrm{A}$ and B and C$)=\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}} \mathrm{P}_{\mathrm{C}}$
$P(A$ and B and $C)=$ probability of independent
events A and B and C occurring in sequence
$P_{A}=$ probability of event A

Mutually Exclusive Events

$P(A$ or $B)=P_{A}+P_{B}$
$P(A$ or $B)=$ probability of either mutually exclusive event A or B occurring in a trial
$P_{A}=$ probability of event A

Conditional Probability

$P(A \mid D)=\frac{P(A) \cdot P(D \mid A)}{P(A) \cdot P(D \mid A)+P(\sim A) \cdot P(D \mid \sim A)}$
$P(A \mid D)=$ probability of event A given event D
$P(A)=$ probability of event A occurring
$P(\sim A)=$ probability of event A not occurring
$P(D \mid \sim A)=$ probability of event D given event A did not occur
3.0 Plane Geometry

Right Triangle

$c^{2}=a^{2}+b^{2}$
(3.4)
$\sin \theta=\frac{a}{c}$
(3.5)
$\cos \theta=\frac{b}{c}$
(3.6)
$\tan \theta=\frac{\mathrm{a}}{\mathrm{b}}$
(3.7)
a

4.0 Solid Geometry

Cube

Volume $=s^{3}$
(4.1)

Surface Area $=6 s^{2}$
(4.2)

Rectangular Prism

Volume $=w d h$
Surface Area $=2(w d+w h+d h)$

Right Circular Cone

Volume $=\frac{\pi r^{2} n}{3}$
Surface Area $=\pi r \sqrt{r^{2}+h^{2}}$
(4.6)

Triangle (3.6)

Area $=1 / 2 \mathrm{bh}$
$a^{2}=b^{2}+c^{2}-2 b c \cdot \cos \angle A$
$b^{2}=a^{2}+c^{2}-2 a c \cdot \cos \angle B$
(3.12)
$c^{2}=a^{2}+b^{2}-2 a b \cdot \cos \angle C$
(3.13)
(3.11)
(3.14)

Rectangle

Perimeter $=2 \mathrm{a}+2 \mathrm{~b}$ (3.9)
Area $=\mathrm{ab}$
(3.10)

Regular Polygons
Area $=\mathrm{n} \frac{\mathrm{s}\left(\frac{1}{2} \mathrm{f}\right)}{2}=\frac{\mathrm{ns}^{2}}{4 \tan \left(\frac{180}{\mathrm{n}}\right)}$

$\mathrm{n}=$ number of sides

Trapezoid

Area $=1 / 2(a+b) h$

Sphere

Volume $=\frac{4}{3} \pi r^{3}$
(4.8)

Surface Area $=4 \pi r^{2}$
(4.9)

Cylinder			
Volume $=\pi r^{2} h$	(4.10)		
Surface Area $=2 \pi r h+2 \pi r^{2}$	(4.11)		

Irregular Prism		(4.12)
Volume $=$ Ah		
A = area of base		

5.0 Constants

$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}=32.27 \mathrm{ft} / \mathrm{s}^{2}$
$\mathrm{G}=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{s}^{2}$
$\pi=3.14159$

6.0 Conversions

8.0 SI Prefixes

Numbers Less Than One		
Power of 10	Prefix	Abbreviation
10^{-1}	deci-	d
10^{-2}	centi-	c
10^{-3}	milli-	m
10^{-6}	micro-	$\boldsymbol{\mu}$
10^{-9}	nano-	n
10^{-12}	pico-	p
10^{-15}	femto-	f
10^{-18}	atto-	a
10^{-21}	zepto-	z
10^{-24}	yocto-	y

Numbers Greater Than One		
Power of 10	Prefix	Abbreviation
10^{1}	deca-	da
10^{2}	hecto-	h
10^{3}	kilo-	k
10^{6}	Mega-	M
10^{9}	Giga-	G
10^{12}	Tera-	T
10^{15}	Peta-	P
10^{18}	Exa-	E
10^{21}	Zetta-	Z
10^{24}	Yotta-	Y

9.0 Equations

Mass and Weight	
$\mathrm{m}=\mathrm{VD}_{\mathrm{m}}$	(9.1)
$\mathrm{W}=\mathrm{mg}$	(9.2)
$\mathrm{W}=\mathrm{VD}_{\mathrm{w}}$	(9.3)
$\mathrm{V}=$ volum $\mathrm{D}_{\mathrm{m}}=$ mas $\mathrm{m}=$ mass $D_{w}=$ weig W = weigh $\mathrm{g}=$ accele	sity sity due

Temperature

$\mathrm{T}_{\mathrm{K}}=\mathrm{T}_{\mathrm{C}}+273$
$\mathrm{T}_{\mathrm{R}}=\mathrm{T}_{\mathrm{F}}+460$
$\mathrm{T}_{\mathrm{F}}=\frac{9}{5} \mathrm{~T}_{\mathrm{c}}+32$
(9.4)
(9.5)
(9.6)
$\mathrm{T}_{\mathrm{K}}=$ temperature in Kelvin
$\mathrm{T}_{\mathrm{C}}=$ temperature in Celsius
$\mathrm{T}_{\mathrm{R}}=$ temperature in Rankin
$T_{F}=$ temperature in Fahrenheit

Force and Moment

$\mathrm{F}=\mathrm{ma} \quad$ (9.7a) $\quad \mathrm{M}=\mathrm{Fd}_{\perp} \quad$ (9.7b)
$\mathrm{F}=$ force
$\mathrm{m}=$ mass
$\mathrm{a}=$ acceleration
$\mathrm{M}=$ moment
$\mathrm{d}_{\perp}=$ perpendicular distance

Equations of Static Equilibrium

$\Sigma F_{x}=0 \quad \Sigma F_{y}=0 \quad \Sigma M_{P}=0$
(9.8)
$F_{x}=$ force in the x-direction
$\mathrm{F}_{\mathrm{y}}=$ force in the y -direction
$\mathrm{M}_{\mathrm{P}}=$ moment about point P

9.0 Equations (Continued)

Energy: Work
$\mathrm{W}=\mathrm{F}_{\\| \mid} \cdot \mathbf{d}$
$\mathrm{W}=$ work
$\mathrm{F}_{\\|}=$force parallel to direction of
displacement
$\mathbf{d}=$ displacement

Power

$P=\frac{E}{t}=\frac{W}{t}$
$P=\tau \omega$
$\mathrm{P}=$ power
$\mathrm{E}=$ energy
W = work
t = time
$\tau=$ torque
$\omega=$ angular velocity

Efficiency

Efficiency (\%) $=\frac{P_{\text {out }}}{P_{\text {in }}} \cdot 100 \% ~(9.12)$
$\mathrm{P}_{\text {out }}=$ useful power output
$P_{\text {in }}=$ total power input

Energy: Potential
$\mathrm{U}=\mathrm{mgh}$
$\mathrm{U}=$ potential energy
$\mathrm{m}=$ mass
$\mathrm{g}=$ acceleration due to gravity
$\mathrm{h}=$ height

Energy: Kinetic

$K=\frac{1}{2} m v^{2}$
$\mathrm{K}=$ kinetic energy
$\mathrm{m}=$ mass
$\mathrm{v}=$ velocity

Energy: Thermal

$\Delta Q=m c \Delta T$
(9.15)
$\Delta Q=$ change in thermal energy
$\mathrm{m}=$ mass
$\mathrm{c}=$ specific heat
$\Delta T=$ change in temperature

Fluid Mechanics

$p=\frac{F}{A}$
$\frac{\mathrm{p}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{p}_{2}}{\mathrm{~T}_{2}} \quad$ (Gay-Lussanc's Law)
$\mathrm{p}_{1} \mathrm{~V}_{1}=\mathrm{p}_{2} \mathrm{~V}_{2}$ (Boyle's Law)
$Q=A v$
$\mathrm{A}_{1} \mathrm{v}_{1}=\mathrm{A}_{2} \mathrm{v}_{2}$
absolute pressure = gauge pressure

+ atmospheric pressure (9.23)
$p=$ absolute pressure
$F=$ force
A = area
$\mathrm{V}=$ volume
$\mathrm{T}=$ absolute temperature
Q = flow rate
v = flow velocity
$\mathrm{P}=$ power

Mechanics	
$\overline{\mathrm{S}}=\frac{\mathrm{d}}{\mathrm{t}}$	(9.24)
$\overline{\mathbf{v}}=\frac{\Delta \mathbf{d}}{\Delta \mathrm{t}}$	(9.25)
$a=\frac{v_{f}-v_{i}}{t}$	(9.26)
$X=\frac{\mathrm{v}^{2} \sin (2 \theta)}{-\mathrm{g}}$	(9.27)
$v=v_{i}+$ at	(9.28)
$d=d_{i}+v_{i} t+1 / 2 a t^{2}$	(9.29)
$\mathrm{v}^{2}=\mathrm{v}_{\mathrm{i}}^{2}+2 \mathrm{a}\left(\mathrm{d}-\mathrm{d}_{\mathrm{i}}\right)$	(9.30)
$\boldsymbol{\tau}=\mathrm{dF} \sin \theta$	(9.31)
$\overline{\mathrm{s}}$ = average speed	
$\overline{\mathbf{v}}=$ average velocity	
$v=$ velocity	
$\mathrm{v}_{\mathrm{i}}=$ initial velocity ($\mathrm{t}=0$)	
$\mathrm{a}=$ acceleration	
$\mathrm{X}=$ range	
$\mathrm{t}=$ time	
$\Delta \mathbf{d}=$ change in displacement d = distance	
$\mathrm{d}_{\mathrm{i}}=$ initial distance ($\mathrm{t}=0$)	
$\mathrm{g}=$ acceleration due to gravity	
$\theta=$ angle	
$\boldsymbol{\tau}=$ torque	
$F=$ force	

Electricity

Ohm's Law

$\mathrm{V}=\mathrm{IR}$
$\mathrm{P}=\mathrm{IV}$
R_{T} (series) $=R_{1}+R_{2}+\cdots+R_{n}$
$\mathrm{R}_{\mathrm{T}}($ parallel $)=\frac{1}{\frac{1}{R_{1}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{n}}}}$

Kirchhoff's Current Law

$I_{T}=I_{1}+I_{2}+\cdots+I_{n}$

$$
\begin{equation*}
\text { or } \mathrm{I}_{\mathrm{T}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{I}_{\mathrm{k}} \tag{9.36}
\end{equation*}
$$

Kirchhoff's Voltage Law

$$
V_{T}=V_{1}+V_{2}+\cdots+V_{n}
$$

$$
\begin{equation*}
\text { or } \quad V_{T}=\sum_{k=1}^{n} V_{k} \tag{9.37}
\end{equation*}
$$

$\mathrm{V}=$ voltage
$\mathrm{V}_{\mathrm{T}}=$ total voltage
I = current
$\mathrm{I}_{\mathrm{T}}=$ total current
$R=$ resistance
$\mathrm{R}_{\mathrm{T}}=$ total resistance
$\mathrm{P}=$ power

Thermodynamics

$P=Q^{\prime}=A U \Delta T$
$P=Q^{\prime}=\frac{\Delta Q}{\Delta t}$
$U=\frac{1}{R}=\frac{k}{L}$
$P=\frac{k A \Delta T}{L}$
$\mathrm{A}_{1} \mathrm{v}_{1}=\mathrm{A}_{2} \mathrm{v}_{2}$
$P_{\text {net }}=\sigma \operatorname{Ae}\left(T_{2}{ }^{4}-T_{1}{ }^{4}\right)$
$\mathrm{k}=\frac{\mathrm{PL}}{\mathrm{A} \Delta \mathrm{T}}$
$\mathrm{P}=$ rate of heat transfer
$Q=$ thermal energy
$A=$ area of thermal conductivity
$U=$ coefficient of heat conductivity
(U-factor)
$\Delta T=$ change in temperature
$\Delta \mathrm{t}=$ change in time
$R=$ resistance to heat flow (R-value)
$\mathrm{k}=$ thermal conductivity
$\mathrm{v}=$ velocity
$P_{\text {net }}=$ net power radiated
$\sigma=5.6696 \times 10^{-8} \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{k}^{4}}$
$e=$ emissivity constant
L = thickness
$\mathrm{T}_{1}, \mathrm{~T}_{2}=$ temperature at time 1 , time 2

10.0 Section Properties

Moment of Inertia

$I_{x x}=\frac{b h^{3}}{12}$
(10.1)

$I_{x x}=$ moment of inertia of a rectangular section about x axis

Complex Shapes Centroid

$\bar{x}=\frac{\sum x_{i} A_{i}}{\sum A_{i}}$ and $\bar{y}=\frac{\sum y_{i} A_{i}}{\sum A_{i}}$
$\overline{\mathrm{x}}=\mathrm{x}$-distance to the centroid
$\bar{y}=y$-distance to the centroid
$x_{i}=x$ distance to centroid of shape i
$y_{i}=y$ distance to centroid of shape i
$A_{i}=$ Area of shape i

Rectangle Centroid

$\bar{x}=\frac{b}{2}$ and $\bar{y}=\frac{h}{2}$
(10.3)

Right Triangle Centroid
$\bar{x}=\frac{b}{3}$ and $\bar{y}=\frac{h}{3}$
(10.4)

Semi-circle Centroid
$\bar{x}=r$ and $\bar{y}=\frac{4 r}{3 \pi}$
(10.5)

$\bar{x}=x$-distance to the centroid
$\overline{\mathrm{y}}=\mathrm{y}$-distance to the centroid

11.0 Material

Stress (axial)
 $\sigma=\frac{\mathrm{F}}{\mathrm{A}}$
 $\sigma=$ stress
 $\mathrm{F}=$ axial force
 $\mathrm{A}=$ cross-sectional area

Strain (axial)

$\varepsilon=\frac{\delta}{L_{0}}$
$\varepsilon=$ strain
$\mathrm{L}_{0}=$ original length
$\delta=$ change in length

Modulus of Elasticity

$E=\frac{\sigma}{\varepsilon}$
(11.3)
$E=\frac{\left(F_{2}-F_{1}\right) L_{0}}{\left(\delta_{2}-\delta_{1}\right) A}$
$\mathrm{E}=$ modulus of elasticity
$\sigma=$ stress
$\varepsilon=$ strain
$\mathrm{A}=$ cross-sectional area
$\mathrm{F}=$ axial force
$\delta=$ deformation

12.0 Structural Analysis

Beam Formulas			
	Reaction Moment Deflection	$\begin{aligned} & R_{A}=R_{B}=\frac{P}{2} \\ & M_{\max }=\frac{\mathrm{PL}}{4} \quad \text { (at point of load) } \\ & \Delta_{\max }=\frac{\mathrm{PL}}{48 E 1} \text { (at point of load) } \end{aligned}$	$\begin{gathered} (12.1) \\ (12.2) \\ (12.3) \end{gathered}$
	Reaction Moment Deflection	$\begin{aligned} & R_{A}=R_{B}=\frac{\omega L}{2} \\ & M_{\max }=\frac{\omega L^{2}}{8} \quad \text { (at center) } \\ & \Delta_{\max }=\frac{5 \omega L^{4}}{384 E I} \quad \text { (at center) } \end{aligned}$	$\begin{aligned} & (12.4) \\ & (12.5) \\ & (12.6) \end{aligned}$
	Reaction Moment Deflection	$\begin{aligned} & \mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{B}}=\mathrm{P} \\ & \mathrm{M}_{\max }=\mathrm{Pa} \\ & \Delta_{\max }=\frac{\mathrm{Pa}}{24 \mathrm{Ea}}\left(3 \mathrm{aL}^{2}-4 \mathrm{a}^{2}\right) \\ & \text { (at center) } \end{aligned}$	$\begin{aligned} & (12.7) \\ & (12.8) \\ & (12.9) \end{aligned}$
	Reaction Moment Deflection	$\begin{aligned} & R_{A}=\frac{P b}{L} \text { and } R_{B}=\frac{P a}{L} \\ & M_{\text {max }}=\frac{\text { Pab }}{L}(\text { at Point of Load } \\ & \Delta_{\text {max }}=\frac{\text { Pab }(a+2 b) \sqrt{3 a(a+2 b)}}{} \\ & \quad\left(\text { at } x=\sqrt{\frac{(a+2 b)}{3,}} \text { when } \mathrm{a}>\mathrm{b}\right) \end{aligned}$	$\begin{gathered} (12.10) \\ \text { d) }(12.11) \\ (12.12) \end{gathered}$

Deformation: Axial

$\delta=\frac{\mathrm{FL}_{0}}{\mathrm{AE}}$
$\delta=$ deformation
$\mathrm{F}=$ axial force
$\mathrm{L}_{0}=$ original length
A $=$ cross-sectional area
$\mathrm{E}=$ modulus of elasticity

Truss Analysis

$\underline{\mathrm{J}}=\mathrm{M}+\mathrm{R}$
(12.14)
$J=$ number of joints
$\mathrm{M}=$ number of members
$R=$ number of reaction forces

13.0 Simple Machines

Mechanical Advantage (MA)

$$
\begin{equation*}
\mathrm{IMA}=\frac{\mathrm{D}_{\mathrm{E}}}{\mathrm{D}_{\mathrm{R}}} \quad \text { (13.1) } \quad \mathrm{AMA}=\frac{\mathrm{F}_{\mathrm{R}}}{\mathrm{~F}_{\mathrm{E}}} \tag{13.2}
\end{equation*}
$$

\% Efficiency=((AMA $) 100$
IMA = ideal mechanical advantage
AMA = actual mechanical advantage
$\mathrm{D}_{\mathrm{E}}=$ effort distance
$D_{R}=$ resistance distance
$F_{E}=$ effort force
$F_{R}=$ resistance force

Lever

1 st
Class

2nd
Class

3rd
Class

Wheel and Axle

Effort at Wheel

Pulley Systems

IMA = total number of strands of a single string supporting the resistance
(13.4)

IMA $=\frac{D_{E}(\text { string pulled })}{D_{R}(\text { resistance lifted })}$

Inclined Plane

$I M A=\frac{L}{H}$

Wedge

$I M A=\frac{L}{H}$
(13.7)

Screw

IMA $=\frac{C}{\text { Pitch }}$
(13.8)

Pitch $=\frac{1}{\mathrm{TPI}}$
Pitch

$\mathrm{C}=$ circumference
$\mathrm{r}=$ radius
Pitch = distance between
threads
TPI = threads per inch

Compound Machines

$M A_{\text {TOTAL }}=\left(M A_{1}\right)\left(\mathrm{MA}_{2}\right)\left(\mathrm{MA}_{3}\right) \ldots$

Gears; Sprockets with Chains; and Pulleys with Belts Ratios

$$
\begin{align*}
& \mathrm{GR}=\frac{N_{\text {out }}}{N_{\text {in }}}=\frac{d_{\text {out }}}{d_{\text {in }}}=\frac{\omega_{\text {in }}}{\omega_{\text {out }}}=\frac{\tau_{\text {out }}}{\tau_{\text {in }}} \tag{13.11}\\
& \frac{d_{\text {out }}}{d_{\text {in }}}=\frac{\omega_{\text {in }}}{\omega_{\text {out }}}=\frac{\tau_{\text {out }}}{\tau_{\text {in }}} \text { (pulleys) } \tag{13.12}
\end{align*}
$$

Compound Gears
$\mathrm{GR}_{\text {TOTAL }}=\left(\frac{\mathrm{B}}{\mathrm{A}}\right)\left(\frac{\mathrm{D}}{\mathrm{C}}\right)$

$\mathrm{GR}=$ gear ratio
$\omega_{\text {in }}=$ angular velocity - driver
$\omega_{\text {out }}=$ angular velocity - driven
$\mathrm{N}_{\text {in }}=$ number of teeth - driver
$\mathrm{N}_{\text {out }}=$ number of teeth - driven
$\mathrm{d}_{\mathrm{in}}=$ diameter - driver
$\mathrm{d}_{\text {out }}=$ diameter - driven
$\tau_{\text {in }}=$ torque - driver
$\tau_{\text {out }}=$ torque - driven

14.0 Structural Design

Steel Beam Design: Shear

$V_{a} \leq \frac{V_{n}}{\Omega_{v}}$
$V_{n}=0.6 F_{y} A_{w}$
(14.2)
$\mathrm{V}_{\mathrm{a}}=$ internal shear force
$\mathrm{V}_{\mathrm{n}}=$ nominal shear strength
$\Omega_{\mathrm{v}}=1.5=$ factor of safety for shear
$\mathrm{F}_{\mathrm{y}}=$ yield stress
$\mathrm{A}_{\mathrm{w}}=\mathrm{area}$ of web
$\frac{V_{n}}{n_{v}}=$ allowable shear strength

15.0 Storm Water Runoff

Storm Water Drainage

$\mathrm{Q}=\mathrm{C}_{\mathrm{f}} \mathrm{CiA}$
$C_{C}=\frac{C_{1} A_{1}+C_{2} A_{2}+\cdots}{A_{1}+A_{2}+\cdots}$
$\mathrm{Q}=$ peak storm water runoff rate ($\mathrm{ft}^{3} / \mathrm{s}$)
$\mathrm{C}_{\mathrm{f}}=$ runoff coefficient adjustment factor
C = runoff coefficient
i = rainfall intensity (in./h)
A = drainage area (acres)

Runoff Coefficient Adjustment Factor	
Return Period	Cf
$1,2,5,10$	1.0
25	1.1
50	1.2
100	1.25

Steel Beam Design: Moment	
$\mathrm{M}_{\mathrm{a}} \leq \frac{\mathrm{M}_{\mathrm{n}}}{\Omega_{\mathrm{b}}}$	(14.3)
$M_{n}=F_{y} Z_{x}$	(14.4)
$\mathrm{M}_{\mathrm{a}}=$ internal bending moment	
$\Omega_{b}=1.67=$ factor of safety for bending moment	
$\mathrm{F}_{\mathrm{y}}=$ yield stress	
$\mathrm{Z}_{\mathrm{x}}=$ plastic section modulus about neutral axis	
$\frac{M_{n}}{\Omega_{b}}=$ allowable bending strength	

Rational Method Runoff Coefficients		footing
Categorized by Surface		
Forested	0.059-0.2	16.0 Water Supply
Asphalt	0.7-0.95	
Brick	0.7-0.85	
Concrete	0.8-0.95	Hazen-Williams Formula
Shingle roof	0.75-0.95	$\mathrm{hf}_{\mathrm{f}}=\frac{10.44 \mathrm{LQ}}{} \mathrm{C}^{1.85} \mathrm{~d}^{4.8655}$
Lawns, well drained (sandy soil)		
Up to 2\% slope 2% to 7% slope Over 7\% slope	0.05-0.1	
	$0.10-0.15$	$\begin{aligned} & \mathrm{h}_{\mathrm{f}}=\text { head loss due to friction } \\ & \text { (ft of } \mathrm{H}_{2} \mathrm{O} \text {) } \\ & \mathrm{L}=\text { length of pipe (} \mathrm{ft} \text {) } \\ & \mathrm{Q}= \text { water flow rate (} \mathrm{gpm} \text {) } \\ & \mathrm{C}=\text { Hazen-Williams constant } \end{aligned}$
	0.15-0.2	
Lawns, poor drainage (clay soil)		
Up to 2\% slope 2\% to 7% slope Over 7\% slope	0.13-0.17	
	0.18-0.22	
	0.25-0.35	
Driveways,	0.75-0.85	Dynamic Head
Categorized by Use		dynamic head = static head - head loss (16.2) static head = change in elevation between source and discharge
Farmland	0.05-0.3	
Pasture	0.05-0.3	
Unimproved	0.1-0.3	
Parks	0.1-0.25	
Cemeteries	0.1-0.25	17.0 Heat Loss/Gain
Railroad yard	0.2-0.40	
Playgrounds	0.2-0.35	
Business Districts		Heat Loss/Gain
Neighborhood	0.5-0.7	$\mathrm{Q}^{\prime}=\mathrm{AU} \mathrm{\Delta T}$
City (downtown)	0.7-0.95	$Q=A U \Delta T$
Residential		$\mathrm{U}=\frac{1}{\mathrm{R}}$
Single-family	0.3-0.5	
Multi-plexes,	0.4-0.6	Q = thermal energy
Multi-plexes,	0.6-0.75	A = area of thermal conductivity
Suburban	0.25-0.4	$\mathrm{U}=$ coefficient of heat
Apartments,	0.5-0.7	conductivity (U-factor)
Industrial		$\Delta \mathrm{T}=$ change in temperature
Light	0.5-0.8	$R=\begin{gathered}\text { resistance to heat flow (} R \text { - } \\ \text { value) }\end{gathered}$
Heavy	0.6-0.9	

18.0 Hazen-Williams Constants

Pipe Mlaterial	Typical Range	Clean, New Pipe	Typical Design Value
Cast Iron and Wrought Iron	$80-150$	130	100
Copper, Glass or Brass	$120-150$	140	130
Cement lined Steel or Iron	150	140	
Plastic PVC or ABS	$120-150$	140	130
Steel, welded and seamless or interior riveted	$80-150$	140	100

19.0 Equivalent Length of (Generic) Fittings

Screwed Fittings		Pipe Size										
		1/4	3/8	1/2	3/4	1	$11 / 4$	$11 / 2$	2	$21 / 2$	3	4
Elbows	Regular 90 degree	2.3	3.1	3.6	4.4	5.2	6.6	7.4	8.5	9.3	11.0	13.0
	Long radius 90 degree	1.5	2.0	2.2	2.3	2.7	3.2	3.4	3.6	3.6	4.0	4.6
	Regular 45 degree	0.3	0.5	0.7	0.9	1.3	1.7	2.1	2.7	3.2	4.0	5.5
Tees	Line Flow	0.8	1.2	1.7	2.4	3.2	4.6	5.6	7.7	9.3	12.0	17.0
	Branch Flow	2.4	3.5	4.2	5.3	6.6	8.7	9.9	12.0	13.0	17.0	21.0
Return Bends	Regular 180 degree	2.3	3.1	3.6	4.4	5.2	6.6	7.4	8.5	9.3	11.0	13.0
Valves	Globe	21.0	22.0	22.0	24.0	29.0	37.0	42.0	54.0	62.0	79.0	110.0
	Gate	0.3	0.5	0.6	0.7	0.8	1.1	1.2	1.5	1.7	1.9	2.5
	Angle	12.8	15.0	15.0	15.0	17.0	18.0	18.0	18.0	18.0	18.0	18.0
	Swing Check	7.2	7.3	8.0	8.8	11.0	13.0	15.0	19.0	22.0	27.0	38.0
Strainer			4.6	5.0	6.6	7.7	18.0	20.0	27.0	29.0	34.0	42.0

Flanged Fittings		Pipe Size																
		1/2	3/4	1	$11 / 4$	$11 / 2$	2	$21 / 2$	3	4	5	6	8	10	12	14	16	18
Elbows	Regular 90 degree	0.9	1.2	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12.0	14.0	17.0	18.0	21.0	23.0
	Long radius 90 degree	1.1	1.3	1.6	2.0	2.3	2.7	2.7	3.4	4.2	5.0	5.7	7.0	8.0	9.0	9.4	10.0	11.0
	Regular 45 degree	0.5	0.6	0.8	1.1	1.3	1.7	2.0	2.5	3.5	4.5	5.6	7.7	9.0	11.0	13.0	15.0	16.0
Tees	Line Flow	0.7	0.8	1.0	1.3	1.5	1.8	1.9	2.2	2.8	3.3	3.8	4.7	5.2	6.0	6.4	7.2	7.6
	Branch Flow	2.0	2.6	3.3	4.4	5.2	6.6	7.5	9.4	12.0	15.0	18.0	24.0	30.0	34.0	37.0	43.0	47.0
Return Bends	Regular 180 degree	0.9	1.2	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12.0	14.0	17.0	18.0	21.0	23.0
	Long radius 180 degree	1.1	1.3	1.6	2.0	2.3	2.7	2.9	3.4	4.2	5.0	5.7	7.0	8.0	9.0	9.4	10.0	11.0
Valves	Globe	38.0	40.0	45.0	54.0	59.0	70.0	77.0	94.0	120.0	150.0	190.0.	260.0	310.0	390.0			
	Gate						2.6	2.7	2.8	2.9	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2
	Angle	15.0	15.0	17.0	18.0	18.0	21.0	22.0	285.0	38.0	50.0	63.0	90.0	120.0	140.0	160.0	190.0	210.0
	Swing Check	3.8	5.3	7.2	10.0	12.0	17.0	21.0	27.0	38.0	50.0	63.0	90.0	120.0	140.0			

© 2014 Project Lead The Way, Inc.
PLTW Engineering Formula Sheet 2014
$\mathrm{T}=0.693\left(\mathrm{R}_{\mathrm{A}}+2 \mathrm{R}_{\mathrm{B}}\right) \mathrm{C}$
(20.1)
$f=\frac{1}{\mathrm{~T}}$
duty-cycle $=\frac{\left(R_{A}+R_{B}\right)}{\left(R_{A}+2 R_{B}\right)} \cdot 100 \%$
T = period
$f=$ frequency
$\mathrm{R}_{\mathrm{A}}=$ resistance A
$\mathrm{R}_{\mathrm{B}}=$ resistance B
$\mathrm{C}=$ capacitance

21.0 Boolean Algebra

Boolean Theorems	
$X \cdot 0=0$	(21.1)
$X \cdot 1=X$	(21.2)
$X \cdot X=X$	(21.3)
$X \cdot \bar{X}=0$	(21.4)
$X+0=X$	(21.5)
$X+1=1$	(21.6)
$X+X=X$	(21.7)
$X+\bar{X}=1$	(21.8)
$\bar{X}=X$	(21.9)

Commutative Law	
$\mathrm{X} \cdot \mathrm{Y}=\mathrm{Y} \bullet \mathrm{X}$	(21.10)
$\mathrm{X}+\mathrm{Y}=\mathrm{Y}+\mathrm{X}$	

Associative Law	
$\mathrm{X}(\mathrm{YZ})=(\mathrm{XY}) \mathrm{Z}$	(21.12)
$\mathrm{X}+(\mathrm{Y}+\mathrm{Z})=(\mathrm{X}+\mathrm{Y})+\mathrm{Z}$	(21.13)

Consensus Theorems	
$X+\bar{X} Y=X+Y$	(21.16)
$X+\bar{X} \bar{Y}=X+\bar{Y}$	(21.17)
$\bar{X}+X Y=\bar{X}+Y$	(21.18)
$\bar{X}+X \bar{Y}=\bar{X}+\bar{Y}$	(21.19)
DeMorgan's Theorems	
$\overline{X Y}=\bar{X}+\bar{Y}$	(21.20)
$\overline{X+Y}=\bar{X} \cdot \bar{Y}$	(21.21)

22.0 Speeds and Feeds

$$
\begin{equation*}
\mathrm{N}=\frac{\operatorname{cs}\left(12 \frac{\mathrm{in} . \mathrm{t}}{\mathrm{t}}\right)}{\pi \mathrm{d}} \tag{22.1}
\end{equation*}
$$

$\mathrm{f}_{\mathrm{m}}=\mathrm{f}_{\mathrm{t}} \cdot \mathrm{n}_{\mathrm{t}} \cdot \mathrm{N}$
Plunge Rate $=1 / 2 \cdot f_{m}$
$\mathrm{N}=$ spindle speed (rpm)
CS = cutting speed (in./min)
$\mathrm{d}=$ diameter (in.)
$\mathrm{f}_{\mathrm{m}}=$ feed rate (in./min)
$\mathrm{f}_{\mathrm{t}}=$ feed (in./tooth/rev)
$n_{t}=$ number of teeth

23.0 Aerospace

Forces of Flight

$\mathrm{C}_{\mathrm{D}}=\frac{2 \mathrm{D}}{\mathrm{A} \mathrm{\rho v}{ }^{2}}$
$\mathrm{R}_{\mathrm{e}}=\frac{\mathrm{pvl}}{\mu}$
$C_{L}=\frac{2 L}{A \rho v^{2}}$
$\mathrm{M}=\mathrm{Fd}$
(23.4)
$\mathrm{C}_{\mathrm{L}}=$ coefficient of lift
$\mathrm{C}_{\mathrm{D}}=$ coefficient of drag
$\mathrm{L}=\mathrm{lift}$
$\mathrm{D}=\mathrm{drag}$
A = wing area
$\rho=$ density
$\mathrm{R}_{\mathrm{e}}=$ Reynolds number
$\mathrm{v}=$ velocity
$I=$ length of fluid travel
$\mu=$ fluid viscosity
$F=$ force
$\mathrm{m}=$ mass
$g=$ acceleration due to gravity
$\mathrm{M}=$ moment
$\mathrm{d}=$ moment arm (distance from datum perpendicular to F)

Propulsion

$\mathrm{F}_{\mathrm{N}}=\mathrm{W}\left(\mathrm{v}_{\mathrm{j}}-\mathrm{v}_{\mathrm{o}}\right)$
$\mathrm{I}=\mathrm{F}_{\text {ave }} \Delta \mathrm{t}$
$\mathrm{F}_{\text {net }}=\mathrm{F}_{\text {avg }}-\mathrm{F}_{\mathrm{g}}$
$\mathrm{a}=\frac{v_{f}}{\Delta t}$
$\mathrm{F}_{\mathrm{N}}=$ net thrust
$\mathrm{W}=$ air mass flow
$\mathrm{v}_{\mathrm{o}}=$ flight velocity
$\mathrm{v}_{\mathrm{j}}=$ jet velocity
I = total impulse
$\mathrm{F}_{\text {ave }}=$ average thrust force
$\Delta t=$ change in time (thrust duration)
$\mathrm{F}_{\text {net }}=$ net force
$\mathrm{F}_{\text {avg }}=$ average force
$\mathrm{F}_{\mathrm{g}}=$ force of gravity
$\mathrm{v}_{\mathrm{f}}=$ final velocity
$\mathrm{a}=$ acceleration
$\Delta t=$ change in time (thrust duration)

NOTE: $F_{\text {ave }}$ and $F_{\text {avg }}$ are easily confused.

Energy

$\mathrm{K}=\frac{1}{2} \mathrm{mv}^{2}$
$U=\frac{-G M m}{R}$
$E=U+K=-\frac{G M m}{2 R}$
$\mathrm{G}=6.67 \times 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \times \mathrm{s}^{2}}$
$\mathrm{K}=$ kinetic energy
$\mathrm{m}=$ mass
$\mathrm{v}=$ velocity
$\mathrm{U}=$ gravitational potential energy
$\mathrm{G}=$ universal gravitation constant
$\mathrm{M}=$ mass of central body
$\mathrm{m}=$ mass of orbiting object
$R=$ Distance center main body to center of orbiting object
$\mathrm{E}=$ Total Energy of an orbit

Orbital Mechanics

$e=\sqrt{1-\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}}$
$\mathrm{T}=2 \pi \frac{\mathrm{a}^{\frac{3}{2}}}{\sqrt{\mu}}=2 \pi \frac{\mathrm{a}^{\frac{3}{2}}}{\sqrt{\mathrm{GM}}}$
$\mathrm{F}=\frac{\mathrm{GMm}}{\mathrm{r}^{2}}$
$e=$ eccentricity
$\mathrm{b}=$ semi-minor axis
a =semi-major axis
T = orbital period
a = semi-major axis
$\mu=$ gravitational parameter
F = force of gravity between two bodies
$\mathrm{G}=$ universal gravitation constant
M =mass of central body
$\mathrm{m}=$ mass of orbiting object
r = distance between center of two objects

Bernoulli's Law

$$
\begin{equation*}
\left(P_{s}+\frac{\rho v^{2}}{2}\right)_{1}=\left(P_{s}+\frac{\rho v^{2}}{2}\right)_{2} \tag{23.16}
\end{equation*}
$$

$\mathrm{P}_{\mathrm{S}}=$ static pressure
$\mathrm{v}=$ velocity
$\rho=$ density

Atmosphere Parameters

$\mathrm{T}=15.04-0.00649 \mathrm{~h}$
$\mathrm{p}=101.29\left[\frac{(\mathrm{~T}+273.1)}{288.08}\right]^{5.256}$
$\rho=\frac{\mathrm{p}}{}{ }^{(23.17)}$
$0.2869(\mathrm{~T}+273.1)$
$\mathrm{T}=$ temperature
$\mathrm{h}=$ height
$\mathrm{p}=$ pressure
$\rho=$ density

