Name:	KEY	Class:	Date:	ID: A
te Terretti yenden mi				

POE Practice Test - Thermodynamics

Multiple Choice

Identify the choice that best completes the statement or answers the question.

- 1. Heat is the transfer of energy from one place to another. It naturally occurs by one of three methods. Which one is <u>not</u> a natural heat transfer method?
 - a. Conduction
 - b. Convection
 - c. Radiation
 - (d.) Refrigeration
- 2. Radiation is the chief method of energy transfer
 - a.) from the sun to an earth satellite.
 - b. from a gas flame to the top layer of water in a teakettle..
 - c. from a soldering iron to metals being soldered.
 - d. from the bottom of a glass of water to an ice cube floating in it.
- 3. Of the processes below, the one in which practically all the heat transfer is by conduction is:
 - a. from the sun to an earth satellite.
 - b. from a gas flame to the top layer of water in a teakettle.
 - (c.) from a stovetop to a pot of water above it.
 - d. from the bottom of a glass of water to an ice cube floating in it.
- 4. Plastic handles are often used on kitchen utensils because
 - a. the plastic is a good radiator
 - b) the plastic is a good insulator
 - c. the plastic is a good conductor
 - d. the plastic softens gradually with excessive heat
- 5. To increase the insulating qualities of a house, a homeowner should:
 - (a.) Increase the R-value
 - b. Increase the U-value
 - c. Increase radiation
 - d. Increase conduction
- 6. The law stating that heat energy always goes toward entropy, or moves from hot to cold and from order to disorder, is known as:
 - a. 1st law of thermodynamics
 - b 2nd law of thermodynamics
 - c. Newton's first law
 - d. Newton's second law

- 7. Which of the following methods of heat transfer explains why air near the ceiling is warmer than the air near the floor in an enclosed room?
 - (a.) Convection
 - b. Conduction
 - c. Radiation
 - d. R-value

POE Practice Problems

A team of students tests a material for its thermal conductivity (k). After 20 minutes in a heat box, the temperature is 48° C inside the box and 28° C on top of the material. The following data is true about this test:

Area of material = $.0225 \text{ m}^2$

Thickness of material = .0127 m

Light bulb = 25 W

1. Calculate the thermal conductivity constant (k) for the material.

Formula	Substitute / Solve	Final Answer
P= KAAT L	K= (25W) (0127m) (0225mg) 20K	(.706 W/n K
K=AAT	K= ,706 WK	and the second s

2. Calculate the amount of energy transferred through the material.

Formula	Substitute / Solve	Final Answer
$Q = P \pm$	Q = 35000 J	30,000 Joyles

3. A piece of copper steel (specific heat = 490 J/kg·K) has a mass of 300 g. If it is heated to 150°C, then plunged into 4.00 kg water (specific heat = 4180 J/kg·K) at 20°C, what will be the final temperature at equilibrium?

oc the final temperature at equinorium:					
Formula	Substitute / Solve	Final Answer			
- Q= QW MATe=MATe	[3kg(490 Thgik) Tf-423k] = 4kg(4180 T/kgik) Tf-293k Solvefor Tf	(294.1K)			

$$-147T_{f} + 62181 = 1672\overline{o_{f}} - 4898960$$

$$4961,141 = 16867T_{f}$$

$$294.1k = T_{f}$$